メニュー English Ukrainian ロシア語 ホーム

愛好家や専門家向けの無料テクニカル ライブラリ 無料のテクニカルライブラリ


無線電子工学および電気工学の百科事典
無料のライブラリ / 無線電子および電気機器のスキーム

ガーランド水力発電所。 無線エレクトロニクスと電気工学の百科事典

無料のテクニカルライブラリ

無線電子工学と電気工学の百科事典 / 代替エネルギー源

記事へのコメント 記事へのコメント

Питание сельских радиоузлов малой мощности, освещение школ, больниц, библиотек в неэлектрифицированных местностях можно осуществить от простейшей гидроэлектростанции, сооружение которой обходится дешевле всех существующих электростанций в расчете на киловатт мощности. Описываемые в статье гидроэлектростанции не нуждаются в плотине и могут быть установлены на реках глубиной более 25 см при скорости течения выше 1 м/сек.

Гидроэлектростанция состоит из легких турбин - гидровингроторов, нанизанных в виде гирлянды на тросе, переброшенном через реку. Один конец троса закрепляется в опорном подшипнике, второй - вращает ротор генератора. Трос в этом случае играет роль своеобразного вала, вращательное движение которого передается к генератору.

Мощность Р, которую можно получить от такой гидростанции, подсчитывается по формуле:

P = 0,15 * DLV3K,

где Р - мощность в кВт, D - диаметр вингротора в м, L - активная длина гирлянды в м, V - скорость течения в м/сек, К - число гирлянд.

ウイングローターガーランドの回転数 n はほぼ

n=0,3*V/D

Каждый гидровингротор состоит из двух смещенных относительно друг друга полуцилиндров 11. При погружении гидровингротора в поток воды вследствие разности гидравлических давлений на его поверхности создается крутящий момент (относительно оси вращения). Одновременно гидровингротор оказывает и значительное лобовое сопротивление потоку, благодаря чему трос гирлянды 1 натягивается и выгибается в направлении течения реки. Гидровингроторы крепятся к тросу попарно, при этом каждая пара имеет общий узел крепления 13, 14, и в каждой из них один гидровингротор развернут по отношению к другому на 90°. Это необходимо для создания равномерного вращения троса, а следовательно, и вала генератора. Реакция сил натяжения троса воспринимается береговыми опорами, которые состоят из подпорных досок 6, укрепленных в грунте, и опорных лент 3, имеющих отверстия, через которые забиваются в грунт клинья 4,5, удерживающие опоры. На раме 18 установлены редукторная и генераторная части установки. Свободная опора на противоположном берегу имеет крюк 7 и узел опорного подшипника 6, 9, 10, обеспечивающего свободное вращение троса под разными углами к направлению потока воды. Крепление второго конца троса также шарнирное.

Снимая трос с опоры, в течение первых 20 - 30 сек не следует брать его в руки, так как он может резко раскрутиться. Второй конец троса перекинут через шкив 17 и закреплен стяжками. Шкив закреплен на оси редуктора (механизма привода) при помощи обоймы 16 и болтов. Трос работает на скручивание, и только в этом случае он передает мощность с турбин на генератор.

Одна гирлянда турбин обеспечивает мощность от нескольких десятков ватт до 5-15 киловатт. Можно объединять гирлянды, заставляя работать их на общую нагрузку и повышая тем самым мощность гидростанции.

В этом случае узел свободной опоры (рис. 1 в рамке) состоит из жестких профилей 14, соединенных между собой накладками 15 и закрепленных кольями 17, причем колья опираются на вкопанные деревянные брусья 13. У свободной опоры гирлянды крепятся с помощью крюков 16 и обойм упорного подшипника 18. Этот узел аналогичен узлу крепления одной гирлянды. Генератор устанавливается на площадке 11, расположенной со стороны первой линии. Площадка жестко соединена с корпусом станины 8 трансмиссионного вала 5, Вал 5 соединен со станиной посредством опор 4. Вращение троса гирлянд передается по трансмиссионному валу полуперекрещивающимся ремнем, охватывающим вал 5 и шкив 1. Однако для установки гидростанций больших мощностей лучше применять шестеренчатое зацепление посредством пар конических шестеренок.

Генератор 2 крепится либо непосредственно через переходную муфту к трансмиссионному валу 5, либо имеет ступень редукции 3. В остальном устройство понятно из чертежей. Для использования вертикально расположенного генератора, который может быть установлен на высоте безопасной при подъеме уровня воды, шестерни 3 можно выполнить коническими, с углом зацепления 45°. Всю трансмиссию и генератор можно помещать в водонепроницаемый кожух типа воздушного колокола.

В таблице приведены названия и основные данные наиболее распространенных генераторов, которые могут быть использованы на микрогэс.

ジェネレーター名 電源キロワット RPM
GPM 130 0,13 500
GAU-4101
GAU-4684
0,1 800/450
G52A 0,96 625/850
APN-68 1,8 750
VS-18 / 8 3,5/2,7 1000/750
MP-542-1 / 2 3,6 500
MP-543-1 / 2 6 428
VS-24 / 2 6,5 750
MP-543-2 / 2 9,5 428
VS-29、5/21 10 375
VS-34 / 18 10 300
MP-544-1 / 2 11,2 375
VS-34 / 26 11,5 250
B-48 / 24-6 17,5 187

В качестве примера описанных микрогэс может служить станция, установленная на 1,5 км ниже г. Старая Руза на Москве-реке. В этом месте средняя скорость течения 1,5 м/сек, глубина 40-50 см. Активная длина гирлянды равнялась 47 м, длина вингроторов в паре - 1 м с учетом просвета, диаметр гирлянды - 0,3 м. Гирлянда развивала мощность 8,6-8,8 кВт и вращала с полной нагрузкой генератор 6 кВт (МП 543 1/2, n=428 об/мин). КПД генератора был равен 0,7, диаметр гирлянды - 17,3 мм,

При менее мощных гидростанциях (1-2 кВт), работающих на скоростях 1,5-2 м сек, можно применять трос диаметром 10-12 мм.

Приводим данные расчета такой электростанции. Для вращения генератора ГПМ-130 (от ветроагрегата ВЭ-2) требуется мощность 260 Вт. При скорости вращения 500 об/мин и скорости течении реки 1,5 м/сек длина гирлянды должна быть равна 3 м, диаметр каждого вингротора 200 мм, а длина - 450 мм. Для обеспечения необходимой мощности потребуется 3 пары гидровингроторов, установленных на расстоянии 50 мм друг от друга-Скорость вращения гирлянды при этом будет равна 135 об/мин, и, следовательно, нужен редуктор, повышающий число оборотов в 3.7 раза.

図は、ガーランド水力発電所の部品とアセンブリの図面を示しています。

ガーランド水力発電所
(クリックして拡大)

Конструкция отдельных узлов и деталей может быть без ущерба изменена. Рама (деталь 18) для генератора, например, может быть выполнена из деревянных брусьев, конфигурацию детали 17 можно упростить, выполнив шкив из трех дисков, склепанных вместе, и т.д.

図1、2、3は、マルチガーランド水力発電所とその個々のノードを示しています。

ガーランド水力発電所
(クリックして拡大)

ガーランド水力発電所

ガーランド水力発電所

ガーランド水力発電所

著者: V.ブリノフ

他の記事も見る セクション 代替エネルギー源.

<<戻る

科学技術の最新ニュース、新しい電子機器:

スターシップのための宇宙からのエネルギー 08.05.2024

新技術の出現と宇宙計画の発展により、宇宙での太陽エネルギーの生産がより実現可能になってきています。スタートアップ企業のトップである Virtus Solis は、SpaceX の Starship を使用して地球に電力を供給できる軌道上発電所を構築するというビジョンを共有しました。スタートアップ企業のVirtus Solisは、SpaceXのStarshipを利用して軌道上に発電所を建設するという野心的なプロジェクトを発表した。このアイデアは太陽エネルギー生産の分野を大きく変え、より利用しやすく、より安価になる可能性があります。このスタートアップの計画の中核は、Starshipを使って衛星を宇宙に打ち上げるコストを削減することだ。この技術的進歩により、宇宙での太陽エネルギー生産は従来のエネルギー源と比べてより競争力のあるものになると期待されています。 Virtual Solis は、Starship を使用して必要な機器を配送し、軌道上に大型太陽光発電パネルを構築することを計画しています。ただし、重要な課題の 1 つは、 ... >>

強力なバッテリーを作成する新しい方法 08.05.2024

技術の発展とエレクトロニクスの使用拡大に伴い、効率的で安全なエネルギー源を作り出すという問題はますます緊急になっています。クイーンズランド大学の研究者らは、エネルギー産業の状況を変える可能性のある高出力亜鉛ベース電池を開発するための新しいアプローチを発表した。従来の水ベースの充電式電池の主な問題の 1 つは電圧が低いことであり、そのため最新の機器での使用が制限されていました。しかし、科学者によって開発された新しい方法のおかげで、この欠点は見事に克服されました。研究の一環として、科学者たちは特別な有機化合物であるカテコールに注目しました。これは、バッテリーの安定性を向上させ、効率を高めることができる重要なコンポーネントであることが判明しました。このアプローチにより、亜鉛イオン電池の電圧が大幅に向上し、競争力が高まりました。科学者によると、このようなバッテリーにはいくつかの利点があります。彼らはbを持っています ... >>

温かいビールのアルコール度数 07.05.2024

最も一般的なアルコール飲料の 1 つであるビールは、飲む温度によって変化する独自の味を持っています。国際的な科学者チームによる新しい研究で、ビールの温度がアルコールの味の知覚に大きな影響を与えることが判明しました。材料科学者のレイ・ジャン氏が主導したこの研究では、温度が異なるとエタノールと水分子が異なる種類のクラスターを形成し、それがアルコールの味の知覚に影響を与えることが判明した。低温ではより多くのピラミッド状のクラ​​スターが形成され、「エタノール」の辛味が軽減され、飲み物のアルコール感が軽減されます。逆に温度が上がるとクラスターが鎖状になり、アルコール感が強くなります。これは、白酒などの一部のアルコール飲料の味が温度によって変化する理由を説明します。得られたデータは飲料メーカーに新たな可能性をもたらします。 ... >>

アーカイブからのランダムなニュース

ポリマーの溶解度に対する陰イオンの影響 06.11.2021

米国とチェコ共和国の化学者は、高分子の条件付き表面の曲率と、さまざまな陽イオンおよび陰イオンの解離定数との関係を確立しました。 ポリマーの平面構造が水の水素結合のネットワークを変形させると、イオンはポリマーとより強く相互作用することが判明しました。 この相互作用は、ポリマーが溶解するのに役立ちます。

プラハ化学工科大学の Jan Heyda とペンシルバニア大学の Paul S. Cremer が率いる科学者グループは、弱配位アニオンと異なる長さのポリエチレン オキサイド ポリマーとの相互作用を調査しました。 彼らは、表面の曲率が異なる分子が周囲の水分子の水素結合のネットワークにさまざまな方法で影響を与え、それがイオン吸着の程度の変化につながることを示唆しました。

イオン吸着エネルギーと水素結合ネットワークの歪み度との関係を示した。 得られた結果は、平らな表面を持つ巨大分子が水の構造を強くゆがめ、したがって、水素結合の変形したネットワークを介してポリマー表面に容易に浸透する弱く配位する陰イオンとよく相互作用するという仮説を確認しました。 逆に、ほとんどの小分子の表面は平坦とは言えません。その結果、エネルギーが得られず、疎水性が高く、溶解性が低くなります。

この場合、末端基の半球状の表面が周囲の水をほとんど歪めないため、ポリマーとアニオンとの主な相互作用は鎖の真ん中で正確に発生します。 SCN- の平均解離定数は、鎖の中間で 0,1 リットルあたり約 2,4 モル、その末端で 5,3 リットルあたり XNUMX モル以上でした。 ポリマーとチオシアン酸塩との相互作用による最大エネルギー利得は、XNUMX モルあたり XNUMX キロジュールでした。

得られたデータは、ポリマーの疎水性相互作用や溶液化学の研究だけでなく、ゲストホスト型の超分子化合物の研究など、科学の他の分野にも影響を与えます。

その他の興味深いニュース:

▪ 東芝超電導電動機

▪ 現実世界の地図上のビデオ ゲーム

▪ 人工筋肉

▪ 電子インクカラースクリーン搭載スマートフォン

▪ ソーラーパワーの超軽量自走式列車

科学技術、新しいエレクトロニクスのニュースフィード

 

無料の技術ライブラリの興味深い資料:

▪ サイトのセクション 溶接装置。 記事の選択

▪ 記事 健康になりたければ、自分を鍛えなさい。 人気の表現

▪ 記事 ホメオスタシスとは何ですか? 詳細な回答

▪ 記事 輸送収穫機の運転手。 労働保護に関する標準的な指示

▪ 記事 乾燥および半乾燥植物油からの固形石鹸の調製。 簡単なレシピとヒント

▪ 記事 ツイストリング。 フォーカスシークレット

この記事にコメントを残してください:

Имя:


Eメール(オプション):


コメント:





このページのすべての言語

ホームページ | 図書館 | 物品 | サイトマップ | サイトレビュー

www.diagram.com.ua

www.diagram.com.ua
2000-2024