メニュー English Ukrainian ロシア語 ホーム

愛好家や専門家向けの無料テクニカル ライブラリ 無料のテクニカルライブラリ


無線電子工学および電気工学の百科事典
無料のライブラリ / 無線電子および電気機器のスキーム

共振周波数計。 無線エレクトロニクスと電気工学の百科事典

無料のテクニカルライブラリ

無線電子工学と電気工学の百科事典 / 測定技術

記事へのコメント 記事へのコメント

共振周波数計Известно, что даже простейшие измерительные приборы позволяют быстрее и лучше наладить и испытать ту или иную радиоконструкцию. Сегодня мы знакомим вас с описанием резонансного частотомера - прибора, который будет весьма полезным в радиолюбительской практике.

Он поможет вам определить наличие и частоту неизвестных электрических колебаний, относительный уровень напряжения основной частоты и ее гармоник, проверить укладку границ диапазонов, стабильность работы гетеродина приемника, высокочастотного генератора или передатчика на любительские диапазоны.

Внешний вид прибора приведен в заставке статьи. Он представляет собой малогабаритную конструкцию, собранную на полупроводниковых деталях. Принцип его действия раскрывает само название - в основу заложен резонансный метод измерения.

Пять коммутируемых рабочих диапазонов позволяют перекрывать полный интервал частот, отведенных для радиовещания с амплитудной модуляцией сигнала и размешенных в границах 150кГц-26 МГц, что охватывает длинные, промежуточные, средние и короткие волны.

Частоты по диапазонам распределены в следующем порядке: I - 150-430, II - 430-1200, III - 1200-3700, IV - 3700-11000 и V - 11000-26000 кГц. Настройка в пределах каждого диапазона плавная. Измеряемую частоту отсчитывают по шкале, проградуированной непосредственно в единицах МГц.

Точность настройки в резонанс определяют по максимальным показаниям стрелочного индикатора - микроамперметра постоянного тока, подключаемого к выходу прибора.

Прибор имеет автономный источник питания - гальванический элемент типа "316". Ток потребления не превышает 0,5 мА. Вес конструкции около 0,6 кг. Габаритные размеры - 110x155x55 мм.

共振周波数計

Схема содержит пять колебательных контуров L1C2C3, L2C2C4, L3C2C5; L4C2C6 L5C2C7, работающих в пяти указанных выше частотных диапазонах. Необходимая коммутация осуществляется переключателем П1, плавная настройка - конденсатором переменной емкости С2.

С помощью подстроечных сердечников катушек L1-L3 и полупеременных конденсаторов С3-С7 производится первоначальная укладка граничных частот каждого диапазона.

С входных гнезд Г1 и Г2 исследуемый сигнал через разделительный конденсатор C1 небольшой емкости и переключатель П1 подводится к работающему контуру. Выделенное последним в процессе настройки в резонанс высокочастотное напряжение с части катушки через переключатель П2, объединенный с П1, подается на детектор - диод Д.

После преобразования высокочастотного сигнала в постоянную составляющую напряжение последней поступает на вход однокаскадного усилителя, собранного на транзисторе Т1. Для устранения возможного попадания переменного напряжения вход усилителя - база Т1 - заблокирован конденсатором С9 большой емкости. Входная цепь не имеет специального регулятора уровня подводимого сигнала, так как можно обойтись другими средствами, не усложняя схему.

Постоянная составляющая сигнала, поступая на базу транзистора в отрицательной полярности, управляет током коллектора Iк. В момент настройки в резонанс ток коллектора достигает максимального значения, что фиксируется микроамперметром, подключаемым на выход к гнездам Г3 и Г4.

Помимо тока Iк, вызванного входным напряжением, стрелочный прибор фиксирует и начальный ток коллектора Iкн. Его величина у некоторых транзисторов сравнительно большая, это вызывает смешение стрелки индикатора при отсутствии напряжения на входе усилителя. Чтобы избавиться от этого недостатка, рамка прибора зашунтирована резистором R1 и заблокирована конденсатором С8 большой емкости от попадания переменного напряжения.

詳細

Для сборки частотомера нужны: конденсаторы постоянной емкости: С1 и C9 - керамические, типа КТ, КТ-1а, КД и К10-7В (два по 0,047, параллельно), КЛС, МБМ, соответственно; С8 - электролитический, типа К50-3, К50-6. Конденсатор переменной емкости C2 (одна секция сдвоенного блока с твердым диэлектриком) типа КП4-5, от транзисторного приемника "Кварц", переносной радиолы "Мрия". Его можно заменить конденсатором с воздушным диэлектриком типа КПЕ-4 от приемника "Альпинист". Полупеременные конденсаторы С3-C7 - керамические, типа КПК-М.

Переключатель диапазонов П1-П2 - галетный, любого типа на пять положений и два направления. Гнезда Г1-Г4 - телефонные. Транзистор Т1 -типа П13, П14, П15, П16, П40, П41 или любой другой аналог. Диод Д1 - типа Д1, Д2, Д9. Выключатель Вк- - однополюсный тумблер.

Для контурных катушек L1-L5 нужны пластмассовые каркасы (см. рис. ). Эти детали в широкую продажу не поступают, поэтому надо приобрести готовые контурные катушки, полноценные или некондиционные. Для намотки L1-L3 подойдут четырехсекционные каркасы длинноволновых или средневолновых гетеродинных катушек приемника "Селга", а для L4-L5 - гладкие каркасы входных или гетеродинных коротковолновых катушек приемников "Сокол-4", "Россия" и и др. Каркасы должны быть снабжены подстроечными стержневыми сердечниками из магнитодиэлектрика, запрессованными в пластмассовые резьбовые пробки со шлицем под жало отвертки. Для катушек L1-L2 нужны сердечники из феррита марки Ф = 600, а для L3-L5 - Ф=100. Различить марку феррита можно по цвету пластмассовых пробок. Первые - белые, вторые - черные.

共振周波数計

Намотку всех катушек на каркасах начинают со стороны размещения подстроечного сердечника. Этот конец является началом и соединяется с общим проводом схемы частотомера.

Катушки L1-L3 наматывают внавал, равномерно размещая витки во всех секциях каркаса, L4 - в один слой, виток к витку, a L3 - в один ряд, с шагом 0,35-0,4 мм. Начало и конец двух последних катушек закрепляют на каркасе нитками. Готовые катушки слегка промазывают клеем БФ-4. Моточные данные катушек приведены в таблице.

共振周波数計

Распайку выводов катушек на штырьки оснований каркасов производят в соответствии с обозначениями, данными на рисунке. Буквой Н обозначено начало, О - отвод и К - конец обмотки.

Монтажную плату вырезают из фольгированного гетинакса или стеклотекстолита толщиной 1,5-2 мм. При использовании переменного конденсатора КП4-5 ее размеры равны 93x80 мм.
Рисунок монтажных соединений выполняют на фольге какой-либо быстро сохнущей краской, например нитролаком. После высыхания краски ненужную фольгу вытравливают в водном растворе хлорного железа.

Размещение деталей и монтаж платы производят согласно рисунку. Цифрами обозначены точки соединения элементов платы с другими деталями схемы.

共振周波数計

Переднюю панель прибора вырезают из алюминия толщиной 2-3 мм. На заготовке высверливают отверстия, обрабатывают лицевую сторону мелкозернистой наждачной бумагой в продольном направлении до образования ровной матовой поверхности с легкими рисками.

На промытую и просушенную панель краской наносят надписи и покрывают тонким слоем бесцветного лака.

Шкалу прибора делают из плотной бумаги. Тушью наносят пять полуокружностей, по числу рабочих диапазонов, и другие надписи.

ペーパースケールは、厚さ1〜2mmの有機ガラスケーシングで覆われています。

Визирный указатель изготовляют также из оргстекла, но толщиной 2,5-3 мм. Посредине полоски делают глубокую тонкую риску, которая должна хорошо просматриваться на фоне шкалы. В местах, соответствующих размещению полуокружностей на шкале, высверливают отверстия 1 мм, необходимые для нанесения опорных точек при градуировке. Указатель укрепляют на ручке.

Ось переменного конденсатора удлиняют. Для гальванического элемента изготовляют контактные пружины, обеспечивающие его электрическое соединение со схемой.

デバイスのケースはプラスチックまたは木製です。

Собрав и проверив монтаж, приступайте к налаживанию и градуированию шкалы частотомера. Для их выполнения нужен промышленный генератор стандартных сигналов типа ГСС-6, Г4-1а, Г4-І8 или хорошо отградуированный любительский аналог.

Налаживание начинают с проверки работоспособности частотомера на всех диапазонах. Для этого через гнезда Г1 и Г2 вход прибора соединяют с выходом генератора. К гнездам Г3 и Г4, соблюдая полярность, подключают микроамперметр постоянного тока на 100-200 мкА. Поставив переключатель П в положение 1, а визирный указатель на середину шкалы, проверяют первый диапазон частотомера.

Для этого, подавая с генератора высокочастотное напряжение величиной 100-200 мкВ и перестраивая частоту в пределах 15О-430 кГц, находят момент совпадения настроек приборов, момент резонанса зафиксирует микроамперметр.

Если стрелка индикатора отклоняется на незначительный угол, то надо сменить транзистор. Нормальным считается такое положение, когда в момент резонанса стрелка отклоняется не менее чем на две трети шкалы.

Проверив работоспособность частотомера на других диапазонах, приступают к укладке граничных частот.

Начинают это опять с первого диапазона. Визирный указатель ставят в положение максимальной емкости переменного конденсатора. С генератора подают низшую частоту диапазона, равную 150 кГц, и вращением подстроечного сердечника катушки L1 настраивают контур в резонанс. После этого изменяют емкость конденсатора С2 на максимальную и, подавая сигнал с частотой 430 кГц, вращением ротора конденсатора С3 снова добиваются резонанса. Так же выполняют укладку границ и на остальных диапазонах. Вполне допустимо положение, когда границы диапазона получаются на 10-20% шире нормы.

Закончив укладку, приступают к градуировке шкалы. Первый диапазон можно проградуировать через каждые 10 кГц, второй до 0,6 МГц - также через 10 кГц, а остальную часть и третий диапазон - через 50 кГц. Четвертый до 6 МГц - через 100 кГц, а остальную часть и пятый - также через 0,5 МГц.

Для удобства работы с частотомером надо выделить метки стандартной промежуточной частоты 465 кГц и граничных - растянутых коротковолновых диапазонов. Они имеют следующие значения: 25 м - 11,5-12,1 МГц, 31 м - 9,4-9,8 МГц, 4 м - 7,0-7,5 МГц, 49 м - 5,9-6,3 МГц.

著者: M. ルミャンツェフ

他の記事も見る セクション 測定技術.

読み書き 有用な この記事へのコメント.

<<戻る

科学技術の最新ニュース、新しい電子機器:

光信号を制御および操作する新しい方法 05.05.2024

現代の科学技術は急速に発展しており、日々新しい手法や技術が登場し、さまざまな分野で新たな可能性を切り開いています。そのような革新の 1 つは、ドイツの科学者による光信号を制御する新しい方法の開発であり、これはフォトニクス分野での大きな進歩につながる可能性があります。最近の研究により、ドイツの科学者は石英ガラス導波管内に調整可能な波長板を作成することができました。液晶層の使用に基づくこの方法により、導波路を通過する光の偏光を効果的に変化させることができる。この技術的進歩により、大量のデータを処理できるコンパクトで効率的なフォトニックデバイスの開発に新たな展望が開かれます。新しい方法によって提供される偏光の電気光学制御は、新しいクラスの集積フォトニックデバイスの基礎を提供する可能性があります。これにより、次のような大きな機会が開かれます ... >>

プレミアムセネカキーボード 05.05.2024

キーボードは、私たちの毎日のコンピューター作業に不可欠な部分です。ただし、ユーザーが直面する主な問題の 1 つは、特にプレミアム モデルの場合、騒音です。しかし、Norbauer & Co の新しい Seneca キーボードでは、状況が変わるかもしれません。 Seneca は単なるキーボードではなく、完璧なデバイスを作成するための 5 年間の開発作業の成果です。このキーボードは、音響特性から機械的特性に至るまで、あらゆる側面が慎重に考慮され、バランスがとられています。 Seneca の重要な機能の 1 つは、多くのキーボードに共通するノイズの問題を解決するサイレント スタビライザーです。さらに、キーボードはさまざまなキー幅をサポートしているため、あらゆるユーザーにとって便利です。 Seneca はまだ購入できませんが、夏の終わりにリリースされる予定です。 Norbauer & Co の Seneca は、キーボード設計の新しい標準を表します。彼女 ... >>

世界一高い天文台がオープン 04.05.2024

宇宙とその謎の探索は、世界中の天文学者の注目を集める課題です。都会の光害から遠く離れた高山の新鮮な空気の中で、星や惑星はその秘密をより鮮明に明らかにします。世界最高峰の天文台、東京大学アタカマ天文台の開設により、天文学の歴史に新たなページが開かれています。アタカマ天文台は海抜 5640 メートルに位置し、天文学者に宇宙研究の新たな機会をもたらします。この場所は地上望遠鏡の最高地点となり、研究者に宇宙の赤外線を研究するためのユニークなツールを提供します。高地にあるため空はより澄み、大気からの干渉も少なくなりますが、高山に天文台を建設することは多大な困難と課題を伴います。しかし、困難にもかかわらず、新しい天文台は天文学者に研究のための広い展望をもたらします。 ... >>

アーカイブからのランダムなニュース

液体窒素は宇宙旅行の発展を助ける 25.03.2001

再利用可能な宇宙船 (RSSC) に燃料を供給する新しい方法は、すぐに宇宙旅行を非常に手頃な価格にするかもしれません。

新技術の秘密は、大気から液体酸素を直接取得することです。 「アルケミスト」と呼ばれる提案された給油システムにより、ボーイング 777 航空機に匹敵するサイズの航空機が従来の飛行場から離陸できるようになります。

スペースシャトルの打ち上げ重量の最大90%が燃料であるため、この燃料補給方法は打ち上げコストの大幅な削減につながります。

酸素を搭載せずに離陸すると、酸素と水素の接触がなくなるため、打ち上げ重量が半分になり、打ち上げがより安全になります。 高度約8kmで、装置は3時間パトロールし、空気中の酸素を液化します。

航空機のタービンからの酸素は、翼と胴体の 340 つの熱交換器に入ります。 KKMI が XNUMX トンの酸素を収集した後、その重量は XNUMX 倍以上になり、すでにロケットのように大気圏の上端に向けて離陸しています。 その後、軌道コンパートメントが分離され、発射段が地球に着陸します。 飛行プログラムの最後に、軌道コンパートメントは着陸も行います。

その他の興味深いニュース:

▪ クロルピリホスは肥満のリスクを高める

▪ 電子脳制御インプラント

▪ RFシンセサイザSTW81101とSTW81102のチップ

▪ 電気熱量効果を利用した体温調節生地

▪ Intel Merrifield 上の Dell Venue 7 タブレット

科学技術、新しいエレクトロニクスのニュースフィード

 

無料の技術ライブラリの興味深い資料:

▪ サイトの「マイクロコントローラー」セクション。 記事の選択

▪ 記事 反乱軍の忠誠心は気まぐれだ。 人気の表現

▪ 記事 スポーツダイビングは何歳からできるの? 詳細な回答

▪ カサバナンの記事。 伝説、栽培、応用方法

▪ 記事 太陽エネルギーの熱力学的変換器。 無線エレクトロニクスと電気工学の百科事典

▪ 記事 安定化電圧電源、220/0-20 ボルト、0,4 アンペア。 無線エレクトロニクスと電気工学の百科事典

この記事にコメントを残してください:

Имя:


Eメール(オプション):


コメント:





このページのすべての言語

ホームページ | 図書館 | 物品 | サイトマップ | サイトレビュー

www.diagram.com.ua

www.diagram.com.ua
2000-2024